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Abstract 11 

Traditionally, integrated land-use/transportation models intend to represent all 12 
opportunities of travel and household location, maximize utilities and find an equilibrium 13 
in which no person or household could improve their satisfaction any further. Energy 14 
scarcity, higher transportation costs and an increasing share of low-income households, 15 
on the other hand, demand special attention to represent constraints that households face, 16 
rather than opportunities for utility maximization. This paper describes the integrated 17 
land-use model SILO that explicitly represents various constraints, including the price of 18 
a dwelling, the travel time to work and the monetary transportation budget. SILO ensures 19 
that no household makes choices that violate these constraints. Implementing such 20 
constraints helps SILO to generate more realistic results under intense scenarios, such as 21 
a serious increase in transportation costs or severely increased congestion.  22 

1 Introduction 23 

Households looking for a new place to live attempt to fulfill as many of their location 24 
preferences as possible. In reality, however, households face a couple of constraints in the 25 
housing search. First and foremost, the price of a new dwelling is a constraint. Even 26 
though loans and bank credits allow households to afford places that exceed their 27 
currently available budget, households have to get along with their income in the long 28 
run. Therefore, low-income households cannot afford moving into the nicest houses on 29 
the market. The income is an obvious constraint on housing choice.  30 

31 
Another constraint households face when looking for a new dwelling is travel time. An 32 
analysis of the 2007-2008 TPB/BMC Household Travel Survey for the Washington/ 33 
Baltimore region revealed that 86% travel less than 60 min to work, and 99% travel less 34 
than 120 min to work. Thus, commuting for no more than two hours is another constraint. 35 
Work locations are even more restrictive if more than one household member is working. 36 
Given that the average time spent on commuting does not change much over time [1], 37 
this constraint is not expected to alter much in the future. As a consequence, workers 38 
should be expected to move closer to their work location if congestion worsens, unless 39 
they have the opportunity to telework.  40 

41 
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A third constraint is concerned with the total household budget. According to the 1 
Consumer Expenditure Survey1, the average U.S. household spends 15.1% of its income 2 
on transportation. Should transportation become more expensive, households have to 3 
either adjust their travel behavior or reallocate their income. In reality, both happen. In 4 
some cases, particularly for low-income households, an increase in gas prices may trigger 5 
a household relocation to a less expensive apartment to ensure that the households gets 6 
along with its income in the long run.  7 

8 
The literature review (section 2) shows that the majority of land-use models do not 9 
represent such constraints explicitly. Section 3 introduces the land-use model SILO, and 10 
section 4 explains how constraints are treated in SILO. Section 5 ends this paper with 11 
conclusions and recommendations for future research. 12 

2 Literature review 13 

One of the pioneering land-use models was designed by John D. Herbert and Benjamin 14 
H. Stevens [2] in cooperation with Britton Harris as an equilibrium model simulating 15 
distribution of households to residential land use. Lowry’s Model of Metropolis [3, 4] is 16 
often considered to be the first computer model that truly integrated land use and 17 
transportation. The Lowry Model assumed the location of basic employment exogenously 18 
and generated an equilibrium for the allocation of non-basic employment and population. 19 
Over the last five decades, this popular model has been implemented many times [e.g., 5, 20 
6, 7]. At least equally influential was Forrester’s Theory of Urban Interactions [8]. Even 21 
though it was an aspatial model, his description of interactions between population, 22 
employment and housing has led the design of many spatial land use models developed 23 
ever since.  24 

25 
Putman developed the Integrated Transportation and Land Use model Package (ITLUP) 26 
[9, 10], where land use was modeled by the Projective Land-Use Model (PLUM) [11-13]. 27 
Later, PLUM was replaced by the frequently applied Disaggregated Residential 28 
Allocation Model (DRAM) and an Employment Allocation Model (EMPAL). 29 

30 
Wilson’s Entropy Model [14, 15] generated an equilibrium by maximizing entropy of 31 
trips, goods flows or the distribution of population. Anas’ [16] model called Residential 32 
Location Markets and Urban Transportation created an equilibrium between demand, 33 
supply and costs for housing. Anas’ model is not deterministic by assigning each 34 
dwelling to the highest-paying buyer, but rather probabilistic to represent variance in 35 
preferences and decisions.  36 

37 
The MEPLAN model developed by Echenique is an aggregated land-use transport model 38 
[17-19] that used the basic concept of the Lowry model as a starting point. The model can 39 
simulate a variety of both land-use and transport scenarios. MEPLAN has been applied to 40 
more than 25 regions worldwide [20: 332]. Another modeling approach using the Lowry 41 

1 Available online at http://www.bls.gov/cex/#tables 
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model as a starting point is the TRANUS model [21: 143 ff, 22, 23] that simulates land 1 
use, transport, and its interactions at the urban and regional scale. 2 

3 
Martínez [24, 25] developed a land-use model under the acronym MUSSA in which 4 
location choice is modeled as a static equilibrium. Residential and commercial land-use 5 
developments compete for available land. MUSSA used the bid-auction approach based 6 
on the bid-rent theory where consumers try to achieve prices as low as possible and not 7 
higher than their willingness to pay [26]. In the bid-rent theory, first introduced by 8 
Alonso [27: 36 ff], land prices are an immediate result of the bid-auction process. In 9 
contrast, the discrete-choice approach -initially developed for housing choice by 10 
McFadden [28: 76 ff]- models land being bought or rented with no instant effect on the 11 
price. Acknowledging that both approaches lead to equivalent results, Martínez argues 12 
elsewhere [26: 884 f] that the bid-auction approach and the discrete-choice approach 13 
should be integrated and seen as inseparable rather than opposed.  14 

15 
PECAS [29, 30] is another land use model that represents an equilibrium of competing 16 
demand for developable land. Households relocate based on available floorspace, prices, 17 
accessibilities and other location factors. PECAS combines this bid-rent approach in a 18 
spatial economic model with a microscopic land development model. DELTA [31] 19 
combines an economic model with households and job location model and a long-20 
distance migration model. 21 

22 
Wegener [32-34] developed the IRPUD model as a fully integrated land-use transport 23 
model. The household location choice is microscopic [35], simulating every household 24 
individually. The IRPUD model was one of the few early approaches that contradicted 25 
the common assumption that land-use models shall reach an equilibrium at the end of 26 
each simulation period [36]. Land-use development aims at equilibrium constantly, but 27 
due to a continuously changing environment and slow reaction times of households, 28 
businesses, developers, and planners this equilibrium stage is never reached. The price of 29 
a new dwelling and the commute distance to the household’s main workplace are 30 
accounted for as true constraints in location choice. Similarly, the Metroscope model for 31 
Portland, Oregon [37] compares expenditures for housing, transportation, food, health 32 
and all other expenses to ensure that household budgets are not exceeded.   33 

34 
Microsimulation was introduced by Orcutt [38: 45 ff.] and subsequently applied to a 35 
series of modeling tasks, including travel behavior, demographic change, spatial 36 
diffusion, health and land use [39: 156 ff.]. The most influential microscopic land use 37 
models include the California Urban Futures (CUF) Model [40, 41], the Integrated Land 38 
Use, Transport and Environment (ILUTE) model [42-44], the Urban Simulation 39 
(UrbanSim) model at the University of Washington, Seattle [45, 46], the Learning-Based 40 
Transportation Oriented Simulations System (ALBATROSS) [47], Predicting 41 
Urbanisation with Multi-Agents (PUMA) [48], SimDELTA [31] and the Integrated Land-42 
Use Model And transportation System Simulation (ILUMASS) [49, 50]. 43 

44 
Good overviews of operational land-use/transport models are given particularly by Hunt 45 
et al. [20], Wegener [51-53], Wegener and Fürst [54: 42 ff], Timmermans [55], 46 
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Kanaroglou and Scott [56], the U.S. Environmental Protection Agency EPA [57: 27 ff], 1 
or Kain [58]. The literature review showed that the majority of land use models do not 2 
explicitly represent constraints. The majority of models lead to an equilibrium reaching 3 
an “ideal” distribution of households and land uses. Commonly, land use is viewed as a 4 
decision-making process in which users optimize their utilities, rather than making 5 
choices among a limited set of alternatives. Notable exceptions are the IRPUD model 6 
Metroscope, which explicitly constrain households to move to dwellings that are within 7 
their respective price range.  8 

3 The land use model SILO 9 

SILO was designed as a microscopic discrete choice model. Every household, person and 10 
dwelling is treated as an individual object. All decisions that are spatial (household 11 
relocation and development of new dwellings) are modeled with Logit models. Initially 12 
developed by Domencich & McFadden [59], such models are particularly powerful at 13 
representing the psychology behind decision making. Other decisions (such as getting 14 
married, giving birth to a child, leaving the parental household, upgrading an existing 15 
dwelling, etc.) are modeled with Markov models by applying transition probabilities.  16 

17 
SILO is built as a middle-weight tool. To fully represent interactions between land use 18 
and transportation, SILO is fully integrated with the Maryland Statewide Transportation 19 
Model (MSTM). On the other hand, it is built to work with less rigorous data collection 20 
and estimation requirements than traditional large-scale land-use models (such as PECAS 21 
or UrbanSim), making SILO simpler to implement. Figure 1 provides an overview of the 22 
SILO model.  23 

24 

25 
Figure 1: Model flowchart for SILO 26 
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1 
At the beginning, a synthetic population is created for the base year 2000. The Public Use 2 
Micro Sample (PUMS) 5% dataset2 is used to create this synthetic population. Using 3 
expansion factors provided by PUMS, household records with their dwelling are 4 
duplicated until the population by PUMS zone (called PUMA) matches 2000 census data. 5 
The location is disaggregated from PUMA to model zones using the socio-economic data 6 
of the MSTM as a weight. Work places are created based on MSTM zonal employment 7 
data. For each worker, a work location is chosen based on the average commute trip 8 
length distribution found in the 2007-2008 TPB/BMC Household Travel Survey. SILO 9 
simulates events that may occur to persons, households and dwellings: 10 

11 
• Household12 

o Relocation13 
o Buy or sell cars14 

• Person15 
o Aging16 
o Leave parental household17 
o Marriage18 
o Birth to a child19 
o Divorce20 
o Death21 
o Find a new job22 
o Get laid off23 

• Dwelling24 
o Construction of new dwellings25 
o Renovation26 
o Deterioration27 
o Demolition28 
o Increase or decrease of price29 

30 
These events are modeled in random order. The random order avoids path dependency 31 
and models events as they happen in reality: Someone celebrates a birthday, somewhere a 32 
household moves, another house is renovated, etc. SILO is calibrated to match observed 33 
land use changes from 2000 to 2010 (so-called backcasting), to reasonable model 34 
changes of population and housing into the future to the year 2040. 35 

36 
SILO is open-source software and was initially developed with research funding by 37 
Parsons Brinckerhoff, Inc. The prototype application was implemented for the 38 
Metropolitan Area of Minneapolis/St. Paul, Minnesota. Currently, the Maryland 39 
Department of Transportation supports the implementation of an improved version for 40 
the State of Maryland. SILO provides a GUI (Graphical User Interface) to facilitate 41 
model applications. A visualization tool is included for the analysis of model results. 42 
Further information on model design and implementation can be found at www.silo.zone. 43 

2 Available for download at http://www2.census.gov/census_2000/datasets/PUMS/FivePercent/ 
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4 Modeling constraints 1 

SILO explicitly represents several constraints households face in location choice. 2 
Following, three constraints are described in more detail, namely housing costs, commute 3 
travel time and household transportation budget.  4 

4.1 Housing cost constraint 5 

The costs of a dwelling form an immediate constraint on any relocation choice. While 6 
households may exceed their housing budget temporarily, households have to get along 7 
with their income in the long run. The distribution of rent and mortgage payments in the 8 
base year according to PUMS data is used as guidance on how much households are 9 
willing to pay for housing. Figure 2 shows the aggregation to reveal the willingness to 10 
pay rent or to pay for a mortgage. As expected, higher income households tend to pay 11 
higher rents than low-income households.  12 

13 

14 
Figure 2: Willingness to pay rent by household income (Source: PUMS 2000 database) 15 

The relationship between income and housing expenses shown in Figure 2 is used to 16 
calculate the utility of a given price using equation 1.  17 

utilpd =1− hhSharepricej ,inc
pricej

pricej<pricei

∑ Equation 1 18 

where: 19 

utilpd   Utility of price p of dwelling d 20 
hhSharepricej ,inc Share of households with income inc who have paid pricej in base 21 

year 22 
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The higher the price, the lower the utility, and the utilities decline faster for low-income 1 
households than for high-income households. When the share of households paying a 2 
certain amount of rent reaches zero, the utility becomes zero and that dwelling becomes 3 
unavailable for this household type. 4 

4.2 Commute travel time constraint 5 

The travel time to work is a principal driver for household location choice. With the 6 
exception of workers who regularly work from home, the travel time from home to work 7 
is an important constraint when choosing a new place to live. Travel time to work is 8 
remarkably constant over time [1, 60]. The aforementioned TPB/BMC household travel 9 
survey was analyzed for the time spent on home-to-work trips. Figure 3 shows estimated 10 
gamma functions representing the observed trip length frequency distribution for 11 
commute trips. Because respondents tend to round their travel time to even numbers (for 12 
example, 12 percent reported their commute to be exactly 30 min), the observed trip 13 
length frequency distribution is lumpy and needs to be interpolated. The gamma function 14 
shown in Figure 3 was calibrated to match the reported average trip length.  15 

16 

17 
Figure 3: Estimated commute travel time for rural, suburban and urban residents 18 

19 
Residents living in the urban counties in Baltimore, Washington, Arlington and 20 
Alexandria have above-average commute times. Even though their average trip lengths 21 
with 9.8 miles is shorter than the average commute trip length of outer suburbs residents 22 
(15.5 miles), urban residents have to cope with more severe congestion, and therefore, 23 
need more time to get to work. Also, the transit share is much higher in urban areas, 24 
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which often leads to longer travel times. The trip length frequency distributions in time 1 
are expected to not change significantly in the future. When households look for a new 2 
housing location, the job location of all workers of this household are taken into account. 3 
Housing locations that are too far from the household’s work locations receive a low 4 
utility closer to zero. 5 

6 
The left map in Figure 4 shows an example of a work location in North Bethesda, MD 7 
(turquoise dot). The trip length frequency distribution of the household travel survey is 8 
used to estimate the utility in terms of commute distance for every other zone (shown in 9 
brown-to-yellow colors). 10 

11 

Figure 4: Likely housing locations for a household with workers in North Bethesda (left), 12 
Columbia (center) and both (right) 13 

14 
The map in the center shows the home location probability for a person working in 15 
Columbia, MD. If these two persons lived in the same household, their joint area within a 16 
reasonable distance to their work locations would be shown in the map on the right side 17 
of Figure 4. SILO explicitly represents this constraint when searching for a new housing 18 
location. The average commute trip length frequency shown in Figure 3 with a dotted line 19 
is scaled to values between 0 and 1 and applied as the commute distance utility. 20 

21 
Unfortunately, telework is not represented explicitly in SILO at this point. An employee 22 
working from home a few days per week is likely to be less constrained by the location of 23 
her or his employer and willing to accept longer commute travel times for the few days 24 
this person is actually commuting to the work location. It is planned to enhance the model 25 
to allow certain occupations types to telecommute, and thereby, offset some of their 26 
travel time budget. 27 

4.3 Household budget constraint 28 

Another constraint explicitly reflected in SILO covers household expenditures. 29 
According to the Consumer Expenditure Survey3 of the Bureau of Labor Statistics, 30 
households spent an average of 13 percent of their income on transportation. Low-income 31 

3 Data available online at http://www.bls.gov/cex/home.htm 
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households spent as much as 28% of their income on transportation. If transportation 1 
costs rise, households will be required to shift expenses. While affluent households will 2 
simply reduce savings or discretionary spending to cover increased transportation costs, 3 
low-income households may struggle to cover substantially higher transportation costs. A 4 
household searching for a new home will estimate transportation costs and consider 5 
carefully if transportation costs at a given home location are within the budget. A low-6 
income household may decide to locate closer to the work location or choose a transit-7 
friendly environment that may allow reducing the number of cars owned by the 8 
household.  9 

10 
Figure 5 compares average income with average expenditures for households with 11 
different incomes. The plot shows data for SILO’s base year 2000, data for 2005 and 12 
2010 were analyzed and displayed very similar patterns. Interestingly, households in 13 
income categories with an annual pre-tax income below $41,499 on the average spend 14 
more money then they earned. According to the BLS, such households draw on savings 15 
or borrow money. Students may get by on loans and retirees may rely on savings4. As 16 
SILO does not trace debts a household may temporarily accumulate, it is simply 17 
acknowledged that households have access to money to cover their expenses. For 18 
example, a household with an after-tax income of $7,192 (left-most point in Figure 5) is 19 
assumed to have access to $15,703 to spend.  20 

21 

22 
Figure 5: Household income and expenditures (Source: Consumer Expenditure Survey, BLS) 23 

A polynominal curve has been estimated to reflect the relationship between income and 24 
expenditures (shown with a red dashed line in Figure 5). For household incomes greater 25 

4 For a more detailed discussion of this phenomenon compare http://www.bls.gov/cex/csxfaqs.htm#q21
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than $41,499 (whose income exceeds expenditures), the entire income is assumed to be 1 
available for expenditures, even though the average household at that income level tends 2 
to save some money. Due to the parameter γ, the available money for expenditures can 3 
never drop below $10,794, even if the household income is 0. 4 

eh =max inc, α ⋅ inch
2 +β ⋅ inch +γ( )"

#
$
% Equation 2 5 

where: 6 

eh Budget available for expenditures of household h 7 
inch Income of household h 8 
α, β, γ Parameters, estimated to α = -2E-6, β = 0.8229 and γ = 10,794 9 

10 
According to the Consumer Expenditure Survey, expenses for gasoline and motor oil 11 
make up between 3.8 percent of all household expenses for high-income and 5.3 percent 12 
for households with an average income. Though this may not seem high, an increase of 13 
travel costs may become a serious burden for low-income households. Litman [61] 14 
suggested that fuel price elasticity is between -0.1 and -0.2 for short run and between -0.2 15 
and -0.3 for medium run adjustments. Short-run adjustments include choosing different 16 
trip destinations and switching the mode, while long-run adjustments (which typically 17 
apply after one to two years) include the purchase of more fuel-efficient vehicles and 18 
selecting more accessible home and job locations. Because a household move is part of a 19 
medium- to long-run adjustment, the higher elasticity with an average of -0.25 was 20 
chosen in SILO: Should gas prices increase by 10 percent, travel demand is expected to 21 
decline by 2.5 percent. Transportation tc costs are calculated based on auto-operating 22 
costs (set to 8.1 cents per mile in the base scenario), the distance to work and 23 
transportation required for other purpose, such as shopping, dropping off children at 24 
childcare, doctor visits, etc. For a scenario that analyzes the impact of higher fuel costs, 25 
the adjusted transportation expenditures are calculated by 26 

eth = tcs 1+
tcs−tcb
tcb

⋅el( ) Equation 3 27 

where: 28 

eth Expenditures of household h for transportation 29 
tc Transportation costs (b for base case and s for alternative scenario) 30 
el Elasticity of travel demand on transportation costs, set to -0.25 31 

32 
In addition to adjusting travel behavior and locations, many households will need to 33 
rebalance expenditures if transportation costs rise. Figure 6 shows the relative size of 34 
various expenditure types. The total expenditure is identical to the expenditure line 35 
shown in Figure 5, and the shares of various expenditure categories were estimated 36 
equally by a polynominal function using observations of the Consumer Expenditures 37 
Survey. A certain share of “Other expenditures” is assumed to be discretionary and could 38 
be used to offset increased transportation costs. No data were available to quantify 39 
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discretionary spending, and a few data points5 were assumed to estimate a smooth curve 1 
for the discretionary spending shown in Figure 6.  2 

3 

4 
Figure 6: Share of expenditure types by household income (Source: Consumer Expenditure 5 

Survey, BLS) 6 
A binomial logit model (equation 4) is used to calculate the utility for transportation 7 
costs. If the discretionary income and savings are insufficient to cover the transportation 8 
costs of a given dwelling, the utility for transportation costs at this dwelling is set to 0. 9 

10 

if (edis,h + sh < tc):          
utiltbd = 011 

if (edis,h + sh  >= tc):      
utiltbd =

1
1+ exp β ⋅ edis,h+shtc( )

Equation 4 12 

where: 13 

utiltbd Utility of dwelling d for transportations budget tb 14 
β Parameters describing sensitivity of increased transportation costs 15 
edis,h Discretionary expenditures of household h 16 
sh Savings of household h 17 

18 

5 Assumed data points for Income/discretionary spending: [$0/$100; $20,000/$1,000; $40,000/$2,200;
$100,000/$10,000; $150,000/$20,000]  
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For households with a higher income, this utility will always be close to 1, as an increase 1 
in transportation costs is insignificant for these households. Households with lower 2 
incomes, however, will find a lower utility if transportation costs at a given dwelling are 3 
high. Should transportation costs exceed the discretionary income plus savings, the utility 4 
for the dwelling will be set to 0, which prevents this household from moving into this 5 
dwelling.   6 

4.4 Merging utilities 7 

In addition to housing costs, commute travel times and transportation costs (described 8 
sections 4.1 to 4.3), a number of further location attributes are included that are deemed 9 
to be desirable but non-essential. Such location factors include the size and the quality of 10 
the new dwelling and the accessibility to population and employment by auto and transit. 11 
While these location factors are desirable, one strong attribute may compensate for 12 
another weak attribute. For example, a house in the suburbs may be weak in terms of 13 
accessibility but strong in terms of size. In contrast, urban apartments tend to be weak in 14 
size but provide excellent accessibilities. A strong attribute may offset a weak attribute, 15 
depending on the household preferences. Those location factors are summarized by 16 
weighted addition: 17 

urfd =α ⋅usized +β ⋅uqualityd +γ ⋅uautoAccd + 1−α −β −γ( ) ⋅utransitAccd Equation 5 18 

where: 19 
urfd Utility of replaceable factors for dwelling d 20 
α, β, γ  Parameters as weights for each factor, distinguished by household types 21 
ufactord Utility of attribute of dwelling d (e.g., size, quality, auto accessibility or 22 

transit accessibility) 23 
24 

In contrast to replaceable utilities, essential utilities are assumed to be mandatory to be 25 
fulfilled. For example, if a dwelling is too expensive for a household, the total utility for 26 
this dwelling shall be set to 0 for this particular household. This is achieved by using the 27 
Cobb-Douglas function that aggregates utilities by multiplication: 28 

ud = urfd
α ⋅utilpd

β ⋅utilctd
γ ⋅utiltbd

1−α−β−γ( ) Equation 6 29 

where: 30 
ud Utility of dwelling d 31 
urfd Utility of replaceable factors of dwelling d 32 
utilpd Utility of the price of dwelling d 33 
utilctd Utility of the commute time for dwelling d 34 
utiltbd Utility of the transportation budget required for dwelling d 35 
α, β, γ  Parameters as weights for each factor, distinguished by household types 36 

37 
Using a multiplication to aggregate essential location factors ensures that if one utility is 38 
0, the entire utility for this dwelling will becomes 0. This way, it is ensured that 39 
households do not move into a place that violates budget constraints.  40 
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5 Conclusions 1 

Many land-use models focus on utility maximization, finding equilibriums and optimally 2 
allocating limited resources. The famous Lowry model is built to reach an equilibrium 3 
between location of work places and location of households every simulation period [3]. 4 
Similarly, most models using Alonso’s bid-rent approach [27] assume an immediate 5 
equilibrium between land prices and demand for land. Dynamic urban models, in 6 
contrast, explicitly represent time delay and limited information that lead to imperfect 7 
equilibriums [62, 63]. While bid-rent models are assumed to better represent land-use 8 
prices, discrete choice models often are expected to more realistically represent delays as 9 
they happen in reality. For example, new demanded housing is not available to move in 10 
right away, but planning, obtaining building permissions and construction may take 11 
several years from when the demand is realized to when the first household may move in. 12 
While SILO follows the discrete choice modeling paradigm, the true benefits of either 13 
approach could best be determined by meta analyses that test the same scenarios in 14 
different models [64].  15 

16 
Wegener [65: 753-755] identified three principal challenges for land-use modeling: 17 
Modeling environmental impacts, being able to model decline rather than growth, and 18 
modeling the impacts of the future energy crises. Testing policies that address 19 
environmental impacts, such as carbon taxes, road pricing or energy-efficient buildings 20 
has an immediate impact on household budgets. Planning for decline requires reallocating 21 
limited resources, including closing of schools or redevelopment of brownfield sites. A 22 
future energy crisis may limit the availability of fossil fuels for transportation or heating 23 
and cooling, with an immediate impact on household mobility and budgets. If these 24 
challenges hold true, representing constraints will become even more important. If 25 
models miss representing changes in travel behavior and location choice under increasing 26 
transportation costs, model results will be less realistic and difficult to defend. If 27 
congestion worsens and people spend more time traveling, models that miss adjusting 28 
destination choice, mode choice and trip chaining will produce unlikely results. 29 
Representing constraints rather than the entire map of opportunities will become more 30 
important in a scarce energy future.  31 
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